您好,欢迎访问湖南省农业科学院 机构知识库!

Pharmacological characterization of a beta-adrenergic-like octopamine receptor in Plutella xylostella

文献类型: 外文期刊

作者: Huang, Qing-Ting 1 ; Ma, Hai-Hao 2 ; Deng, Xi-Le 2 ; Zhu, Hang 2 ; Liu, Jia 2 ; Zhou, Yong 2 ; Zhou, Xiao-Mao 1 ;

作者机构: 1.Hunan Univ, Grad Sch, Long Ping Branch, Changsha 430100, Hunan, Peoples R China

2.Hunan Acad Agr Sci, Changsha 430125, Hunan, Peoples R China

关键词: amitraz; gene expression; P. xylostella; pharmacology; octopamine receptor

期刊名称:ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY ( 影响因子:1.698; 五年影响因子:1.758 )

ISSN: 0739-4462

年卷期: 2018 年 98 卷 4 期

页码:

收录情况: SCI

摘要: The beta-adrenergic-like octopamine receptor (OA2B2) belongs to the class of G-protein coupled receptors. It regulates important physiological functions in insects, thus is potentially a good target for insecticides. In this study, the putative open reading frame sequence of the Pxoa2b2 gene in Plutella xylostella was cloned. Orthologous sequence alignment, phylogenetic tree analysis, and protein sequence analysis all showed that the cloned receptor belongs to the OA2B2 protein family. PxOA2B2 was transiently expressed in HEK-293 cells. It was found that PxOA2B2 could be activated by both octopamine and tyramine, resulting in increased intracellular cyclic AMP (cAMP) levels, whereas dopamine and serotonin were not effective in eliciting cAMP production. Further studies with series of PxOA2B2 agonists and antagonists showed that all four tested agonists (e.g., naphazoline, clonidine, 2-phenylethylamine, and amitraz) could activate the PxOA2B2 receptor, and two of tested antagonists (e.g., phentolamine and mianserin) had significant antagonistic effects. However, antagonist of yohimbine had no effects. Quantitative real-time polymerase chain reaction analysis showed that Pxoa2b2 gene was expressed in all developmental stages of P. xylostella and that the highest expression occurred in male adults. Further analysis with fourth-instar P xylostella larvae showed that the Pxoa2b2 gene was mainly expressed in Malpighian tubule, epidermal, and head tissues. This study provides both a pharmacological characterization and the gene expression patterns of the OA2B2 in P. xylostella, facilitating further research for insecticides using PxOA2B2 as a target.

  • 相关文献
作者其他论文 更多>>